1. Arthur, D., & Vassilvitskii, S. (2006). k-means++: The advantages of careful seeding (Tech. Rep.).Stanford Infolab. https://theory.stanford.edu/∼sergei/papers/kMeansPP-soda.pdf.
2. Brock, A., Lim, T., Ritchie, J. M., & Weston, N. (2017). FreezeOut: Accelerate training by progressively freezing layers.Retrieved from arXiv preprint arXiv:1706.04983.
3. Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., ... & Schiele, B. (2016). The cityscapes dataset for semantic urban scene understanding. InProceedings of the IEEE conference on computer vision and pattern recognition(pp. 3213–3223). Retrieved from https://doi.org/10.1109/cvpr.2016.350.
4. Fully convolutional siamese networks for change detection;Daudt,2018
5. Dong, X., & Shen, J. (2018). Triplet loss in Siamese network for object tracking. InProceedings of the European conference on computer vision (ECCV)(pp. 459–474). Retrieved from https://doi.org/10.1007/978-3-030-01261-8_28.