Author:
Dhada Maharshi,Hadjidemetriou Georgios M.
Reference21 articles.
1. Abaza, K.A. (2016). Back-calculation of transition probabilities for Markovian-based pavement performance prediction models. International Journal of Pavement Engineering. 17 (3). p.pp. 253–264.
2. Abd El-Hakim, R. & El-Badawy, S. (2013). International roughness index prediction for rigid pavements: an artificial neural network application. Advanced Materials Research. 723. p.pp. 854–860.
3. Bunker, J., Hadjidemetriou, G., Marie D’Avigneau, A. & Girolami, M. (2023). On the performance of pothole detection algorithms enhanced via data augmentation. [Online]. Available from: https://www.repository.cam.ac.uk/handle/1810/353670. [Accessed: 31 January 2024].
4. Cantisani, G., D’Andrea, A., Di Mascio, P., Moretti, L., Fiore, N., Petrelli, M., Polidori, C. & Venturini, L. (2023). Materials study to implement a 3D printer system to repair road pavement potholes. Transportation Research Procedia. 69. p.pp. 91–98.
5. Christodoulou, S.E., Kyriakou, C. & Hadjidemetriou, G. (2019). Pavement Patch Defects Detection and Classification Using Smartphones, Vibration Signals and Video Images. In: C. Antoniou, L. Dimitriou, & F. Pereira (eds.). Mobility Patterns, Big Data and Transport Analytics. [Online]. Elsevier, pp. 365–380. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128129708000142. [Accessed: 25 February 2021].