Periodic Points, Stability, Bifurcations, and Transition to Chaos in Generalized Fractional Maps
-
Published:2024
Issue:12
Volume:58
Page:131-142
-
ISSN:2405-8963
-
Container-title:IFAC-PapersOnLine
-
language:en
-
Short-container-title:IFAC-PapersOnLine
Reference90 articles.
1. On the asymptotic stability of linear system of fractional-order difference equations;Abu-Saris;Fract. Calc. Appl. Anal.,2013
2. P. T. Anh, A. Babiarz, A. Czornik, M. Niezabitowski, and S. Siegmund. Asymptotic properties of discrete linear fractional equations. Bullet. Polish Academy Sci. Tech. Sci., 67:, 749–759, 2019.
3. On fractional derivatives and primitives of periodic functions;Area;Abstr. Appl. Anal.,2014
4. F. M. Atici and P. W. Eloe. Initial value problems in discrete fractional calculus. Proc. Am. Math. Soc., 137:981–989, 2009a.
5. F. M. Atici and P. W. Eloe. Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ., 2009: 1–12, 2009b.