1. Antonelo, E.A., Camponogara, E., Seman, L.O., de Souza, E.R., Jordanou, J.P., and Hubner, J.F. (2021). Physics-informed neural nets-based control. arXiv preprint arXiv:2104.02556.
2. State–space modeling for control based on physics-informed neural networks;Arnold;Engineering Applications of Artifcial Intelligence,2021
3. Chen, R.T.Q., Rubanova, Y., Bettencourt, J., and Duve-naud, D. (2019). Neural ordinary differential equations. arXiv preprint arXiv:1806.07366.
4. Fehr, J., Kargl, A., and Eschmann, H. (2022). Identification of friction models for mpc-based control of a power cube serial robot. arXiv preprint arXiv:2203.10896.
5. Modeling, simulation, and vision-/MPC-based control of a Power Cube serial robot;Fehr;Applied Sciences,2020