Hybrid feature selection technique for prediction of cardiovascular diseases
Author:
Publisher
Elsevier BV
Subject
General Medicine
Reference15 articles.
1. Machine learning techniques for heart disease datasets: a survey;Khan,2019
2. Pavithra, V., & Jayalakshmi, V. (2019, December). A Review on Predicting Cardiovascular Diseases Using Data Mining Techniques. InInternational conference on Computer Networks, Big data and IoT(pp. 374-380). Springer, Cham.
3. Pavithra, V., & Jayalakshmi, V. (2020, June). Review of Feature Selection Techniques for Predicting Diseases. In2020 5th International Conference on Communication and Electronics Systems (ICCES)(pp. 1213-1217). IEEE.
4. An Enhanced Grey Wolf Optimization Based Feature Selection Wrapped Kernel Extreme Learning Machine for Medical Diagnosis;Li;Comput. Math. Methods Med.,2017
5. Ramotra, A. K., & Mansotra, V. A Hybrid Cluster and PCA-Based Framework for Heart Disease Prediction Using Logistic Regression. InRising Threats in Expert Applications and Solutions(pp. 111-117). Springer, Singapore.
Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Integrated feature selection and ensemble learning for heart disease detection: a 2-tier approach with ALAN and ET-ABDF machine learning model;International Journal of Information Technology;2024-07-05
2. An efficient cardio vascular disease prediction using multi-scale weighted feature fusion-based convolutional neural network with residual gated recurrent unit;Computer Methods in Biomechanics and Biomedical Engineering;2024-04-17
3. Cardio Vascular Disease Prediction Based on PCA-ReliefF Hybrid Feature Selection Method with SVM;Communications in Computer and Information Science;2024
4. GAN-generated Synthetic Data and SVM-based Feature Selection for Improved Cardiovascular Disease Prediction;2023 Medical Technologies Congress (TIPTEKNO);2023-11-10
5. Prognosis of Hyper Triglycerides Using Data Science and Machine Learning;International Journal of Scientific Research in Science, Engineering and Technology;2023-10-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3