Optimal feature selection for machine learning based intrusion detection system by exploiting attribute dependence
Author:
Publisher
Elsevier BV
Subject
General Medicine
Reference22 articles.
1. J. Jabez, B. Muthukumar, Intrusion Detection System (IDS): anomaly detection using outlier detection approach, in: Proceedings of International Conference on Intelligent Computing, Communication and Convergence (ICCC – 2015), published under Procedia Computer Science, 48, 338–346, Science Direct, ELSEVIER, 2015.
2. V. Mane, S. Pawar, Anomaly based IDS using Back Propagation Neural Network, Int. J. Comput. Applications (IJCA) [0975 - 8887], 136(10) (February 2016) 29–34.
3. A. Ossowicka, M. Pietrolaj, J. Ruminski, A survey of neural networks usage for intrusion detection systems, J. Ambient Intell. Human. Comput., SPRINGER, May 2020.
4. R. Sharma, H. Kalita, P. Borah, Analysis of Machine Learning Techniques based Intrusion Detection Systems, in: Proceedings of 3rd International Conference on Advanced Computing, Networking and Informatics, published under Smart Innovation, Systems and Technologies, Volume 44, Page 485 – 493, SPRINGER 2016.
5. S. Kumar, A. Viinikainen, T. Hamalainen, Machine learning classification model for network based intrusion detection system, in: Proceedings of 11th International Conference for Internet Technology and Secured Transactions (ICITST – 2016), Page 242 – 249, IEEE 2016.
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Case Study: Understanding Internet Anomalies;2024 IEEE International Symposium on Circuits and Systems (ISCAS);2024-05-19
2. Feature Engineering and Computer Vision for Cybersecurity;Advances in Information Security, Privacy, and Ethics;2024-02-23
3. Strengthening Network Security: Deep Learning Models for Intrusion Detection with Optimized Feature Subset and Effective Imbalance Handling;Computers, Materials & Continua;2024
4. APELID: Enhancing real-time intrusion detection with augmented WGAN and parallel ensemble learning;Computers & Security;2024-01
5. A multi-constraint transfer approach with additional auxiliary domains for IoT intrusion detection under unbalanced samples distribution;Applied Intelligence;2023-12-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3