Energy conservation for weak solutions of incompressible fluid equations: The Hölder case and connections with Onsager's conjecture
Author:
Publisher
Elsevier BV
Subject
Analysis,Applied Mathematics
Reference34 articles.
1. Onsager's conjecture with physical boundaries and an application to the vanishing viscosity limit;Bardos;Commun. Math. Phys.,2019
2. Onsager's conjecture for the incompressible Euler equations in bounded domains;Bardos;Arch. Ration. Mech. Anal.,2018
3. A new regularity class for the Navier-Stokes equations in Rn;Beirão da Veiga;Chin. Ann. Math., Ser. B,1995
4. On the energy equality for solutions to Newtonian and non-Newtonian fluids;Beirão da Veiga;Nonlinear Anal.,2019
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Energy identity for the incompressible Cahn–Hilliard/Navier–Stokes system with non–degenerate mobility;Zeitschrift für angewandte Mathematik und Physik;2024-08-26
2. Velocity-Vorticity Geometric Constraints for the Energy Conservation of 3D Ideal Incompressible Fluids;The Journal of Geometric Analysis;2024-06-12
3. A note on energy and cross‐helicity conservation in the ideal magnetohydrodynamic equations;Mathematical Methods in the Applied Sciences;2024-05-26
4. On energy and magnetic helicity equality in the electron magnetohydrodynamic equations;Zeitschrift für angewandte Mathematik und Physik;2024-05-24
5. On the Energy and Helicity Conservation of the Incompressible Euler Equations;Journal of Nonlinear Science;2024-05-16
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3