Optimal partial mass transportation and obstacle Monge–Kantorovich equation

Author:

Igbida Noureddine,Nguyen Van ThanhORCID

Publisher

Elsevier BV

Subject

Analysis,Applied Mathematics

Reference23 articles.

1. Lecture notes on optimal transport problems;Ambrosio,2003

2. Functions of Bounded Variation and Free Discontinuity Problems;Ambrosio,2000

3. Partial L1 Monge–Kantorovich problem: variational formulation and numerical approximation;Barrett;Interfaces Free Bound.,2009

4. Energy with respect to a measure and applications to low dimensional structures;Bouchitté;Calc. Var. Partial Differential Equations,1997

5. Shape optimization solutions via Monge–Kantorovich equation;Bouchitté;C. R. Acad. Sci. Paris Sér. I Math.,1997

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Monge-Kantorovich Mass Transfer Problem in Higher Dimensions;Acta Mathematica Sinica, English Series;2024-05-20

2. Quasi-Convex Hamilton--Jacobi Equations via Finsler $p$-Laplace--Type Operators;SIAM Journal on Mathematical Analysis;2022-08

3. Beckmann-type problem for degenerate Hamilton-Jacobi equations;Quarterly of Applied Mathematics;2021-12-21

4. Monge–Kantorovich equation for degenerate Finsler metrics;Nonlinear Analysis;2021-05

5. Optimal partial transport problem with Lagrangian costs;ESAIM: Mathematical Modelling and Numerical Analysis;2018-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3