Use of artificial neural networks for modelling rate dependent behaviour of adhesive materials
Author:
Publisher
Elsevier BV
Subject
Polymers and Plastics,General Chemical Engineering,Biomaterials
Reference18 articles.
1. Numerical modelling of structures bonded with a rate dependent adhesive;Zgoul;Int J Adhes Adhes,2004
2. Crocombe AD, Zgoul M. Characterising the rate dependent response of adhesively bonded joint. In: Proceedings of the 5th European adhesion conference, EURADH, Lyon, France; 2000.
3. A parametric study on the failure of bonded single-lap joints of carbon composite and aluminium;Seong;Compos Struct,2008
4. A neural network approach to describing the scatter of S–N curves;Bučar;Int J Fatigue,2006
5. A neural network for crack sizing trained by finite element calculations;Zgonc;NDT&E Int,1996
Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Adhesively bonded joints – A review on design, manufacturing, experiments, modeling and challenges;Composites Part B: Engineering;2024-05
2. Nonlinear size-dependent aerodynamics of axially reinforced doubly curved micropanel with GPLs: Application of innovative artificial neural network model;Mechanics of Advanced Materials and Structures;2023-09-23
3. Machine learning approach for analysing and predicting the modulus response of the structural epoxy adhesive at elevated temperatures;The Journal of Adhesion;2023-02-24
4. A machine learning material model for structural adhesives in finite element analysis;International Journal of Adhesion and Adhesives;2022-09
5. Free vibration of axially or transversely graded beams using finite-element and artificial intelligence;Alexandria Engineering Journal;2022-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3