On optimal non-projective ternary linear codes

Author:

Takenaka Mito,Okamoto Kei,Maruta Tatsuya

Publisher

Elsevier BV

Subject

Discrete Mathematics and Combinatorics,Theoretical Computer Science

Reference28 articles.

1. New bounds for n4(k,d) and classification of some optimal codes over GF(4);Bouyukliev;Discrete Math.,2004

2. Some new results for optimal ternary linear codes;Bouyukliev;IEEE Trans. Inform. Theory,2002

3. A.E. Brouwer, Bounds on the minimum distance of linear codes over GF(q) (q=2,3,4,5,7,8,9), http://www.win.tue.nl/~aeb/voorlincod.html.

4. The correspondence between projective codes and 2-weight codes;Brouwer;Des. Codes Cryptogr.,1997

5. R.N. Daskalov, The non-existence of ternary linear [158,6,104] and [203,6,134] codes, Proceedings of the Fifth International Workshop on Algebraic and Combinatorial Coding Theory (ACCT), Sozopol, Bulgaria, 1996, pp. 111–116.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Non-Projective Two-Weight Codes;Entropy;2024-03-27

2. ON THE CONSTRUCTION OF OPTIMAL LINEAR CODES OF DIMENSION FOUR;B KOREAN MATH SOC;2023

3. Nonexistence of linear codes meeting the Griesmer bound;Discrete Mathematics;2022-04

4. On the nonexistence of ternary linear codes attaining the Griesmer bound;Designs, Codes and Cryptography;2022-02-23

5. On a Class of Minihypers in the Geometries $$\text {PG}(r,q)$$;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3