Author:
Dourado Mitre C.,Rautenbach Dieter,Fernandes dos Santos Vinícius,Schäfer Philipp M.,Szwarcfiter Jayme L.,Toman Alexandre
Funder
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
Subject
Discrete Mathematics and Combinatorics,Theoretical Computer Science
Reference23 articles.
1. A Radon theorem for Helly graphs;Bandelt;Arch. Math.,1989
2. R.M. Barbosa, E.M.M. Coelho, M.C. Dourado, D. Rautenbach, J.L. Szwarcfiter, On the Carathéodory number for the convexity of paths of order three, SIAM J. Discrete Math. (in press).
3. Irreversible conversion of graphs;Centeno;Theor. Comput. Sci.,2011
4. The all-paths transit function of a graph;Changat;Czech. Math. J.,2001
5. On triangle path convexity in graphs;Changat;Discrete Math.,1999
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Computing the hull number in toll convexity;Annals of Operations Research;2022-04-26
2. On the $P_3$-Hull Number of Kneser Graphs;The Electronic Journal of Combinatorics;2021-07-30
3. A general framework for path convexities;Journal of Combinatorial Optimization;2020-06-29
4. A General Framework for Path Convexities;Algorithmic Aspects in Information and Management;2019
5. Inapproximability results and bounds for the Helly and Radon numbers of a graph;Discrete Applied Mathematics;2017-12