A probabilistic proof of the Andrews–Gordon identities

Author:

Chapman Robin

Publisher

Elsevier BV

Subject

Discrete Mathematics and Combinatorics,Theoretical Computer Science

Reference6 articles.

1. An analytic proof of the Rogers–Ramanujan–Gordon identities;Andrews;Amer. J. Math.,1966

2. An analytic generalization of the Rogers–Ramanujan identities for odd moduli;Andrews;Proc. Nat. Acad. Sci. USA,1974

3. The Theory of Partitions;Andrews,1976

4. A probabilistic proof of the Rogers–Ramanujan identities;Fulman;Bull. London Math. Soc.,2001

5. Basic Hypergeometric Series;Gasper,1990

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A $q$-Multisum Identity Arising from Finite Chain Ring Probabilities;The Electronic Journal of Combinatorics;2022-04-01

2. An Expectation Formula Based on a Maclaurin Expansion;Taiwanese Journal of Mathematics;2019-06-01

3. A new discrete probability space with applications;Journal of Mathematical Analysis and Applications;2017-11

4. General multi-sum transformations and some implications;The Ramanujan Journal;2015-06-17

5. A PROBABILISTIC VERSION OF MEHLER'S FORMULA;Taiwanese Journal of Mathematics;2014-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3