Author:
Wang Xiaomiao,Chang Yanxun
Subject
Discrete Mathematics and Combinatorics,Theoretical Computer Science
Reference24 articles.
1. Some progress on (v,4,1) difference families and optical orthogonal codes;Abel;J. Combin. Theory Ser. A,2004
2. Difference families;Abel,2006
3. Perfect systems of difference sets—a survey;Abrham;Ars Combin.,1984
4. On a combinatorial problem of antennas in radioastronomy;Bermond,1976
5. Cyclic designs with block size 4 and related optimal optical orthogonal codes;Buratti;Des. Codes Cryptogr.,2002
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Generalized <math display='inline' xmlns='http://www.w3.org/1998/Math/MathML'>
<mrow>
<mrow><mo>(</mo>
<mrow>
<mi>n</mi><mo>×</mo><mi>m</mi><mo>,</mo><mrow><mo>{</mo> <mrow>
<mn>3</mn><mo>,</mo><mn>5</mn></mrow> <mo>}</mo></mrow><mo>,</mo><mn>1</mn></mrow>
<mo>)</mo></mrow></mrow>
</math>
Perfect Difference Families and Related Geometric Orthogonal Codes;Pure Mathematics;2024
2. Maximal (v, k, 2, 1) Optical Orthogonal Codes with k = 6 and 7 and Small Lengths;Mathematics;2023-05-26
3. Geometric orthogonal codes and geometrical difference packings;Designs, Codes and Cryptography;2022-07-06
4. Some progress on optimal $ 2 $-D $ (n\times m,3,2,1) $-optical orthogonal codes;Advances in Mathematics of Communications;2021
5. Optimal 2-D
$$(n\times m,3,2,1)$$
(
n
×
m
,
3
,
2
,
1
)
-optical orthogonal codes and related equi-difference conflict avoiding codes;Designs, Codes and Cryptography;2018-09-10