1. Variable sparsity kernel learning;Aflalo;J. Mach. Learn. Res.,2011
2. F. Bach, Sharp analysis of low-rank kernel matrix approximations, in: Proceedings of the International Conference on Learning Theory, 2013.
3. F. Bach, M. Jordan, Predictive low-rank decomposition for kernel methods, in: Proceedings of the Twenty-second International Conference on Machine Learning, 2005.
4. F. Bach, G. Lanckriet, M. Jordan, Multiple kernel learning, conic duality, and the SMO algorithm, in: Proceedings of the Twenty-first International Conference on Machine Learning, 2004, pp. 41–48.
5. L. Bottou, O. Bousquet, The trade-offs of large scale learning, in: Advances in Neural Information Processing Systems, vol. 20, MIT Press, Cambridge, MA, 2008.