1. G. Tsoumakas, I. Katakis, I. Vlahavas, Mining multi-label data, in: Data Mining and Knowledge Discovery Handbook, 2010, pp. 667–685.
2. A review on multi-label learning algorithms;Zhang;IEEE Trans. Knowl. Data Eng.,2014
3. E. Gibaja, S. Ventura, A tutorial on multilabel learning, ACM Comput. Surveys 47 (3) (2015) 52:1–52:38. ISSN 0360-0300, http://doi.acm.org/10.1145/2716262.
4. R. Al-Otaibi, M. Kull, P. Flach, Declaratively capturing local label correlations with multi-label trees, in: G.A. Kaminka, M. Fox, P. Bouquet, E. Hüllermeier, V. Dignum, F. Dignum, F. van Harmelen (Eds.), Proceedings of the 22nd Biennial European Conference on Artificial Intelligence (ECAI2016), Including Prestigious Applications of Intelligent Systems (PAIS-2016), Vol. 285 of Frontiers in Artificial Intelligence and Applications, IOS press, pp. 1467–1475, http://ebooks.iospress.com/volumearticle/44904, 2016.
5. E.K. Yapp, X. Li, W.F. Lu, P.S. Tan, Comparison of base classifiers for multi-label learning, Neurocomputing. ISSN 0925-2312.