Task-aware adaptive attention learning for few-shot semantic segmentation
-
Published:2022-07
Issue:
Volume:494
Page:104-115
-
ISSN:0925-2312
-
Container-title:Neurocomputing
-
language:en
-
Short-container-title:Neurocomputing
Author:
Mao Binjie,Wang Lingfeng,Xiang Shiming,Pan Chunhong
Funder
National Natural Science Foundation of China National Key Research and Development Program of China
Subject
Artificial Intelligence,Cognitive Neuroscience,Computer Science Applications
Reference69 articles.
1. Alfassy, A., Karlinsky, L., Aides, A., Shtok, J., Harary, S., Feris, R.S., Giryes, R., Bronstein, A.M., 2019. Laso: Label-set operations networks for multi-label few-shot learning, in: CVPR, pp. 6548–6557. 2. Antoniou, A., Storkey, A., Edwards, H., 2017. Data augmentation generative adversarial networks. arXiv. 3. Azad, R., Fayjie, A.R., Kauffman, C., Ayed, I.B., Pedersoli, M., Dolz, J., 2020. On the texture bias for few-shot CNN segmentation. CoRR. 4. Boudiaf, M., Kervadec, H., Ziko, I.M., Piantanida, P., Ayed, I.B., Dolz, J., 2021. Few-shot segmentation without meta-learning: A good transductive inference is all you need?, in: CVPR. 5. Cermelli, F., Mancini, M., Xian, Y., Akata, Z., Caputo, B., 2020. A few guidelines for incremental few-shot segmentation, in: arXiv.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|