1. B. Amos, L. Xu, and Z.J. Kolter. Input convex neural networks. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, volume 70 of Proceedings of Machine Learning Research, pages 146–155. PMLR, 2017.
2. Factorized approach to nonlinear MPC using a radial basis function model;Bhartiya;AIChE J.,2001
3. Fast approximate learning-based multistage nonlinear model predictive control using Gaussian processes and deep neural networks;Bonzanini;Comput. Chem. Eng.,2021
4. Input convex neural networks for building MPC;Bünning;Proc. Mach. Learn. Res.,2021
5. A universal approximation result for difference of Log-Sum-Exp neural networks;Calafiore;IEEE Trans. Neural Networks Learn. Syst.,2020