1. D. Guo, D. Tang, N. Duan, M. Zhou, J. Yin, Dialog-to-action: Conversational question answering over a large-scale knowledge base, in: S. Bengio, H.M. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (Eds.), Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, 3–8 December 2018, Montréal, Canada., pp. 2946–2955.
2. Y. Park, J. Cho, G. Kim, A hierarchical latent structure for variational conversation modeling, in: M.A. Walker, H. Ji, A. Stent (Eds.), Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2018, New Orleans, Louisiana, USA, June 1–6, 2018, Volume 1 (Long Papers), Association for Computational Linguistics, 2018, pp. 1792–1801.
3. Semantic parsing for task oriented dialog using hierarchical representations;Gupta,2018
4. Learning a neural semantic parser from user feedback;Iyer,2017
5. L. Dong, M. Lapata, Language to logical form with neural attention, CoRR abs/1601.01280 (2016).