A class-oriented feature selection approach for multi-class imbalanced network traffic datasets based on local and global metrics fusion

Author:

Liu Zhen,Wang Ruoyu,Tao Ming,Cai Xianfa

Funder

National Natural Science Fund, China

Guangdong Province Natural Science Foundation

Guangdong Higher School Scientific Innovation Project

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Publisher

Elsevier BV

Subject

Artificial Intelligence,Cognitive Neuroscience,Computer Science Applications

Reference41 articles.

1. A multilevel taxonomy and requirements for an optimal traffic-classification model;Khalife;Int. J. Netw. Manag.,2014

2. An effective network traffic classification method with unknown flow detection;Zhang;IEEE Trans. Netw. Serv. Manag.,2013

3. A modular machine learning system for flow-level traffic classification in large networks;Jin;ACM Trans. Knowl. Discov. Data,2012

4. A survey of communication/networking in smart grids;Gao;Future Gener. Comput. Syst.,2012

5. Machine learning algorithms for accurate flow-based network traffic classification: evaluation and comparison;Soysal;Perform. Eval.,2010

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A membership-based resampling and cleaning algorithm for multi-class imbalanced overlapping data;Expert Systems with Applications;2024-04

2. Classifying Malware Traffic Using Images and Deep Convolutional Neural Network;IEEE Access;2024

3. Synthetic Randomized Image Augmentation (SRIA) to Address Class Imbalance Problem;2023 3rd International Conference on Computing and Information Technology (ICCIT);2023-09-13

4. The data preprocessing in improving the classification quality of network intrusion detection systems;EAI Endorsed Transactions on Context-aware Systems and Applications;2023-09-06

5. Has the Social Robot Been Hacked? An Emotion Detection System with Distance-Range Parameters for Feature Selection;2023 IEEE 47th Annual Computers, Software, and Applications Conference (COMPSAC);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3