SRFDet3D: Sparse Region Fusion based 3D Object Detection
-
Published:2024-08
Issue:
Volume:593
Page:127814
-
ISSN:0925-2312
-
Container-title:Neurocomputing
-
language:en
-
Short-container-title:Neurocomputing
Author:
Erabati Gopi KrishnaORCID, Araujo HelderORCID
Funder
Horizon 2020 MSCA FCT
Reference67 articles.
1. Y. Zhou, O. Tuzel, Voxelnet: End-to-end learning for point cloud based 3d object detection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2018, pp. 4490–4499. 2. A.H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, O. Beijbom, Pointpillars: Fast encoders for object detection from point clouds, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 12697–12705. 3. T. Wang, X. Zhu, J. Pang, D. Lin, Fcos3d: Fully convolutional one-stage monocular 3d object detection, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 913–922. 4. T. Yin, X. Zhou, P. Krahenbuhl, Center-based 3d object detection and tracking, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 11784–11793. 5. Y. Chen, S. Liu, X. Shen, J. Jia, Fast point r-cnn, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2019, pp. 9775–9784.
|
|