Author:
Huang Ling,Ruan Su,Denœux Thierry
Subject
Artificial Intelligence,Cognitive Neuroscience,Computer Science Applications
Reference47 articles.
1. R.R. Agravat, M.S. Raval, Brain tumor segmentation and survival prediction. In: International MICCAI Brain lesion Workshop. pp. 338–348. Springer, Shenzhen, China (Oct, 2019).
2. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features;Bakas;Sci. Data,2017
3. S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, R.T. Shinohara, C. Berger, S.M. Ha, M. Rozycki, et al.: Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BraTS challenge. arXiv preprint arXiv:1811.02629 (2018).
4. C. Baur, S. Albarqouni, N. Navab, Semi-supervised deep learning for fully convolutional networks. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 311–319. Springer, Quebec, Canada (Sep, 2017).
5. C. Chen, X. Liu, M. Ding, J. Zheng, J. Li, 3D dilated multi-fiber network for real-time brain tumor segmentation in MRI. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 184–192. Springer, Shenzhen, China (Oct, 2019).
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献