1. For recent examples see: a) X.-P. Zeng, Z.-Y. Cao, X. Wang, L. Chen, F. Zhou, F. Zhu, C.-H. Wang, J. Zhou J. Am. Chem. Soc., 138 (1) (2016), pp. 416–425, 10.1021/jacs.5b11476. b) W. Wang, M. Lou, J. Li, S. A. Pullarkat, M. Ma Chem. Commun., 54 (24) (2018), pp. 3042–3044, 10.1039/c8cc00826d. c) L. Bao, X. Kong, Y. Wang Asian J. Org. Chem., 9 (5) (2020), pp. 757–760, 10.1002/ajoc.202000216. d) W.-Z. Wu, X.-P. Zeng, J. Zhou J. Org. Chem., (2020), Ahead of Print, 10.1021/acs.joc.9b03347.
2. Cyanohydrins in Nature and the Laboratory: Biology, Preparations, and Synthetic Applications
3. a) T.L. Adelsbach, R.S. Tjeerdema, Rev. Environ. Contam. Toxicol., 176 (2002), pp. 137, 10.1007/978-1-4899-7283-5_3. b) A.B. Smith, T. Tomioka, C.A. Risatti, J.B. Sperry, C. Sfouggatakis Org. Lett., 10 (2008), pp. 4359, 10.1021/ol801792k.
4. a) D.A. Evans, L.K. Truesdale, G.L. Carroll J.C.S. Chem. Comm., (1973), pp. 55–56, 10.1039/c39730000055. b) K. Manju, S. Trehan J. Chem. Soc., Perkin Trans. 1, (1995), pp. 2383–2384, 10.1039/P19950002383. c) G.K.S. Prakash, H. Vaghoo, C. Panja, V. Surampudi, R. Kultyshev, T. Mathew, G.A. Olah PNAS, 104 (2007), pp. 3026–3030, 10.1073/pnas.0611309104.
5. a) Y. Kikukawa, K. Suzuki, M. Sugawa, T. Hirano, K. Kamata, K. Yamaguchi, N. Mizuno Angew. Chem., Int. Ed., 51 (2012), pp. 3686-3690, 10.1002/ange.201200486. b) S. Rojas-Buzo, P. Garcia-Garcia, A. Corma ChemCatChem., 9