1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., Zheng, X., 2015.TensorFlow: Large-scale machine learning on heterogeneous systems.https://www.tensorflow.org/.software available from tensorflow.org.
2. Modeling and simulation of agglomeration in turbulent particle–laden flows: a comparison between energy–based and momentum–based agglomeration models;Almohammed;Powder Technol.,2016
3. Modeling and simulation of particle–wall adhesion of aerosol particles in particle–laden turbulent flows;Almohammed;Int. J. Multiph. Flow.,2016
4. Azomaterials.com, 2018.Silica – Silicon dioxide (SiO2).https://www.azom.com/properties.aspx?ArticleID=1114. (Accessed 10 August 2021).
5. Towards particle–resolved accuracy in Euler–Lagrange simulations of multiphase flow using machine learning and pairwise interaction extended point-particle (PIEP) approximation;Balachandar;Theor. Comput. Fluid Dyn.,2020