1. Abnar, S., Dehghani, M., Neyshabur, B., Sedghi, H., 2022. Exploring the Limits of Large Scale Pre-training. In: Proc. Int. Conf. Learn. Represent. pp. 1–42.
2. Cui, S., Wang, S., Zhuo, J., Li, L., Huang, Q., Tian, Q., 2020. Towards discriminability and diversity: Batch nuclear-norm maximization under label insufficient situations. In: Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. pp. 3941–3950.
3. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al., Oct. 2020. An image is worth 16 × 16 words: Transformers for image recognition at scale. In: Proc. Int. Conf. Learn. Represent. pp. 1–12.
4. Domain-adversarial training of neural networks;Ganin;J. Mach. Learn. Res.,2016
5. A deep transfer learning model for inclusion defect detection of aeronautics composite materials;Gong;Compos. Struct.,2020