Prediction of building energy performance using mathematical gene-expression programming for a selected region of dry-summer climate
Author:
Publisher
Elsevier BV
Subject
Electrical and Electronic Engineering,Artificial Intelligence,Control and Systems Engineering
Reference90 articles.
1. A review on applications of ANN and SVM for building electrical energy consumption forecasting;Ahmad;Renew. Sustain. Energy Rev.,2014
2. Comparative study of supervised machine learning algorithms for predicting the compressive strength of concrete at high temperature;Ahmad;Materials (Basel),2021
3. Machine learning based computational approach for crack width detection of self-healing concrete;Althoey;Case Stud. Constr. Mater.,2022
4. Prediction of mechanical and durability characteristics of concrete including slag and recycled aggregate concrete with artificial neural networks (ANNs);Amiri;Construct. Build. Mater.,2022
5. Estimating strength properties of geopolymer self-compacting concrete using machine learning techniques;Awoyera;J. Mater. Res. Technol.,2020
Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Predicting natural vibration period of concrete frame structures having masonry infill using machine learning techniques;Journal of Building Engineering;2024-11
2. Developing reference-based correlations for temperature distribution in VVER reactor using gene expression programming and single-heated channel approach;Nuclear Engineering and Design;2024-08
3. Novel base predictive model of resilient modulus of compacted subgrade soils by using interpretable approaches with graphical user interface;Materials Today Communications;2024-08
4. Indirect estimation of resilient modulus (Mr) of subgrade soil: Gene expression programming vs multi expression programming;Structures;2024-08
5. Predicting the properties of concrete incorporating graphene nano platelets by experimental and machine learning approaches;Case Studies in Construction Materials;2024-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3