Data-driven failure prediction of Fiber-Reinforced Polymer composite materials
Author:
Funder
Natural Sciences and Engineering Research Council of Canada
Publisher
Elsevier BV
Subject
Electrical and Electronic Engineering,Artificial Intelligence,Control and Systems Engineering
Reference42 articles.
1. Using artificial neural networks to predict the fatigue life of different composite materials including the stress ratio effect;Al-Assadi;Appl. Compos. Mater.,2010
2. Optimization of the temperature-time curve for the curing process of thermoset matrix composites;Aleksendrić;Appl. Compos. Mater.,2016
3. Micromechanical-based hybrid mesoscopic 3D approach for non-linear progressive failure analysis of composite structures;Carrere;J. Compos. Mater.,2012
4. Micromechanical-based hybrid mesoscopic three-dimensional approach for non-linear progressive failure analysis of composite structures—Part B: Comparison with experimental data;Carrere;J. Compos. Mater.,2013
5. A micromechanics and machine learning coupled approach for failure prediction of unidirectional CFRP composites under triaxial loading: A preliminary study;Chen;Compos. Struct.,2021
Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Data-driven thermal modeling of in-situ Automated Fiber Placement;Composites Part A: Applied Science and Manufacturing;2024-11
2. Development of machine learning methods for mechanical problems associated with fibre composite materials: A review;Composites Communications;2024-08
3. Machine learning techniques for predictive modelling and uncertainty quantification of the mechanical properties of woven carbon fibre composites;Materials Today Communications;2024-08
4. Optimized Machine Learning Prediction and RSM Optimization of Mechanical Properties in Boiled Eggshell Filler-Added Biocomposites;Fibers and Polymers;2024-07-19
5. Bi-level binary coded fully connected classifier based on residual network 50 with bottom and deep level features for bearing fault diagnosis;Engineering Applications of Artificial Intelligence;2024-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3