Condition monitoring of wind turbines with the implementation of spatio-temporal graph neural network
Author:
Funder
National Natural Science Foundation of China
Publisher
Elsevier BV
Subject
Electrical and Electronic Engineering,Artificial Intelligence,Control and Systems Engineering
Reference41 articles.
1. An artificial neural network-based condition monitoring method for wind turbines with application to the monitoring of the gearbox;Bangalore;Wind Energy,2017
2. Condition monitoring systems: a systematic literature review on machine-learning methods improving offshore-wind turbine operational management;Black;Int. J. Sustain. Energy,2021
3. Control chart monitoring of wind turbine generators using the statistical inertia of a wind farm average;Cambron;Renew. Energy,2018
4. Damage detection in operational wind turbine blades using a new approach based on machine learning;Chandrasekhar;Renew. Energy,2021
5. Graph signal processing and deep learning: Convolution pooling, and topology;Cheung;IEEE Signal Process. Mag.,2020
Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Exploring spatio-temporal dynamics for enhanced wind turbine condition monitoring;Mechanical Systems and Signal Processing;2025-01
2. Heterogeneous graph representation-driven multiplex aggregation graph neural network for remaining useful life prediction of bearings;Mechanical Systems and Signal Processing;2024-11
3. NOx concentration prediction based on multi-channel fused spectral temporal graph neural network in coal-fired power plants;Energy;2024-10
4. Research on the low-dimensional visualization and identification method of the equipment’s conditions by cloud-based screening and hypergraph embedding;Advanced Engineering Informatics;2024-10
5. Condition monitoring of wind turbine based on a novel spatio-temporal feature aggregation network integrated with adaptive threshold interval;Advanced Engineering Informatics;2024-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3