Combining optical flow and Swin Transformer for Space-Time video super-resolution
-
Published:2024-11
Issue:
Volume:137
Page:109227
-
ISSN:0952-1976
-
Container-title:Engineering Applications of Artificial Intelligence
-
language:en
-
Short-container-title:Engineering Applications of Artificial Intelligence
Author:
Wang Xin, Wang HuaORCID, Zhang Mingli, Zhang FanORCID
Reference36 articles.
1. Bao, W., Lai, W.S., Ma, C., Zhang, X., Gao, Z., Yang, M.H., 2019. Depth-aware video frame interpolation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3703–3712. 2. Caballero, J., Ledig, C., Aitken, A., Acosta, A., Totz, J., Wang, Z., Shi, W., 2017. Real-time video super-resolution with spatio-temporal networks and motion compensation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 4778–4787. 3. Chan, K.C., Wang, X., Yu, K., Dong, C., Loy, C.C., 2021. Basicvsr: The search for essential components in video super-resolution and beyond. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 4947–4956. 4. An image is worth 16x16 words: Transformers for image recognition at scale;Dosovitskiy,2020 5. Geng, Z., Liang, L., Ding, T., Zharkov, I., 2022. RSTT: Real-time spatial temporal transformer for space-time video super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 17441–17451.
|
|