Semi-supervised segmentation for primary nasopharyngeal carcinoma tumors using local-region constraint and mixed feature-level consistency
-
Published:2024-07
Issue:
Volume:133
Page:108389
-
ISSN:0952-1976
-
Container-title:Engineering Applications of Artificial Intelligence
-
language:en
-
Short-container-title:Engineering Applications of Artificial Intelligence
Author:
Zheng BinORCID,
Zeng Junying,
Zhang Xiuping,
Jia Xudong,
Xiao Lin,
Qin ChuanboORCID
Reference66 articles.
1. Semi-supervised learning for network-based cardiac MR image segmentation;Bai,2017
2. Head and neck target delineation using a novel PET automatic segmentation algorithm;Berthon;Radiother. Oncol.,2017
3. Uncertainty aware temporal-ensembling model for semi-supervised abus mass segmentation;Cao;IEEE Trans. Med. Imaging,2020
4. The enigmatic epidemiology of nasopharyngeal carcinoma;Chang;Cancer Epidemiol. Biomarkers Prevent.,2006
5. Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z., 2020b. Dynamic convolution: Attention over convolution kernels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 11030–11039.