Environmental isotopes and noble gases in the deep aquifer system of Kazan Trona Ore Field, Ankara, central Turkey and links to paleoclimate

Author:

Arslan Sebnem,Yazicigil Hasan,Stute Martin,Schlosser Peter

Abstract

AbstractEnvironmental isotopes and noble gases in groundwater samples from the Kazan Trona Ore Field are studied to establish the temperature change between the Holocene and the late Pleistocene. Noble gas temperatures (NGTs) presented in this study add an important facet to the global paleotemperature map in the region between Europe and North Africa. The groundwater system under investigation consists of three different aquifers named shallow, middle and deep in which δ18O and δ2H vary from − 8.10‰ to − 12.80‰ and from − 60.89‰ to − 92.60‰ VSMOW, respectively. The average isotopic depletion between unconfined and confined parts of the system is − 2.5‰ in δ18O and − 20‰ in δ2H. It is not possible to explain this depletion solely with the elevation effect. Recharge temperatures derived from dissolved atmospheric noble gases reflect the current average yearly ground temperatures (13°C) for samples collected near the recharge area but are 3 to 8°C lower than today's temperatures in the deep aquifer system. Low 14C activities and high He excesses in the confined parts of the aquifer system suggest that the water in the deep aquifer was recharged during the last Pleistocene under considerably cooler climatic conditions.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)

Reference68 articles.

1. Geology Baseline Study for the Kazan Soda Project Area;Toprak,2000

2. Mass Spectrometric Measurement of Helium Isotopes and Tritium;Ludin,1997

3. Hydrogeology–Hydrogeochemistry Baseline Study of the Kazan Trona Project Area;Yazicigil,2001

4. Use of C-13/C-12 Ratios to Correct Radiocarbon Ages of Material Initially Diluted by Limestone. 6th International Conference on Radiocarbon and Tritium Dating, Pullman, Washington;Pearson,1965

5. Deuterium and O-18 in European groundwaters — links to atmospheric circulation in the past;Rozanski;Chemical Geology,1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3