Abstract
AbstractCarbonate rinds have been used for cross-correlation of landforms as well as a quantitative indicator of soil age. Using the measured rind thickness of clasts found within a deposit, whose age has been independently determined, allows the construction of a calibrated surface-age proxy. Measurements were taken at sites within the Mojave Desert, the northwestern Sonoran Desert, the southern Great Basin, and the western Colorado Plateau. These sites are all within about 300 km of the intersection of the borders of the states of California, Arizona, and Nevada. In the study area, elevation varied from 200 to 1200 m, MAP was from 95 to 195 mm, and MAT was from 18.4° to 23.3°C. The calibrated proxy, while not accounting for the effects of parent material or climate on rind development, does show a strong correlation (R2 = 0.74, P < 0.05) between carbonate rind thickness and surface age for deposits of late to middle Pleistocene age. The calibrated chronosequence, rind thickness = 0.0889 + 0.0079 [surface age]), is in general valid over a large region of southwestern United States. This statistical relation suggests that parent material, climate, and elevation may not be as strong a control on carbonate accumulation as is age for younger soils.
Publisher
Cambridge University Press (CUP)
Subject
General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献