Relict nebkhas (pimple mounds) record prolonged late Holocene drought in the forested region of south-central United States

Author:

Seifert Christopher L.,Cox Randel Tom,Forman Steven L.,Foti Tom L.,Wasklewicz Thad A.,McColgan Andrew T.

Abstract

AbstractThe origin and significance of pimple mounds (low, elliptical to circular dune-like features found across much of the south-central United States) have been debated for nearly two centuries. We cored pimple mounds at four sites spanning the Ozark Plateau, Arkansas River Valley, and Gulf of Mexico Coastal Plain and found that these mounds have a regionally consistent textural asymmetry such that there is a significant excess of coarse-grained sediment within their northwest flanks. We interpret this asymmetry as evidence of an eolian depositional origin of these mounds and conclude they are relict nebkhas (coppice dunes) deposited during protracted middle to late Holocene droughts. These four mounds yield optically stimulated luminescence ages between 2400 and 700 yr that correlate with well-documented periods of eolian activity and droughts on the southern Great Plains, including the Medieval Climate Anomaly. We conclude vegetation loss during extended droughts led to local eolian deflation and pimple mound deposition. These mounds reflect landscape response to multi-decadal droughts for the south-central U.S. The spatial extent of pimple mounds across this region further underscores the severity and duration of late Holocene droughts, which were significantly greater than historic droughts.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)

Reference107 articles.

1. A Holocene Vegetation Record from the Mississippi River Valley, Southeastern Missouri

2. Potentials and problems in using nebkha dunes as indicators of soil degradation in the Molopo Basin, South Africa and Botswana;Dougill,2001

3. Optical and radiocarbon ages of stacked paleosols and dune sands in the Nebraska Sand Hills, USA

4. Late-Quaternary vegetation history at Cupola Pond, Ozark National Scenic Riverways, southeastern Missouri;Smith;Unpublished MS thesis,1984

5. Seismotectonic implications of sand blows in the southern Mississippi Embayment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3