Testing the Landscape Reconstruction Algorithm for spatially explicit reconstruction of vegetation in northern Michigan and Wisconsin

Author:

Sugita Shinya,Parshall Tim,Calcote Randy,Walker Karen

Abstract

AbstractThe Landscape Reconstruction Algorithm (LRA) overcomes some of the fundamental problems in pollen analysis for quantitative reconstruction of vegetation. LRA first uses the REVEALS model to estimate regional vegetation using pollen data from large sites and then the LOVE model to estimate vegetation composition within the relevant source area of pollen (RSAP) at small sites by subtracting the background pollen estimated from the regional vegetation composition. This study tests LRA using training data from forest hollows in northern Michigan (35 sites) and northwestern Wisconsin (43 sites). In northern Michigan, surface pollen from 152-ha and 332-ha lakes is used for REVEALS. Because of the lack of pollen data from large lakes in northwestern Wisconsin, we use pollen from 21 hollows randomly selected from the 43 sites for REVEALS. RSAP indirectly estimated by LRA is comparable to the expected value in each region. A regression analysis and permutation test validate that the LRA-based vegetation reconstruction is significantly more accurate than pollen percentages alone in both regions. Even though the site selection in northwestern Wisconsin is not ideal, the results are robust. The LRA is a significant step forward in quantitative reconstruction of vegetation.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3