1. Intuitionistic logic and Bell's inequalities;Adelman,1992
2. A sheaf model for intuitionistic quantum mechanics;Adelman;Applied Categorical Structures,1995
3. Quantum numbers viewed intuitionistically;Adelman,1995
4. Adelman, M., & Corbett, J. V. (2001). Quantum mechanics as an intuitionistic form of classical mechanics. In Proceedings of the centre for mathematical analysis, Australian National University, Geometric analysis and applications (Vol. 39, pp. 15–29).
5. Artin, A., Grothendieck, A., & Verdier, J.-L. (1972). ‘Théorie des topos et cohomologie étale des schémas’ (SGA4). Springer lecture notes in mathematics (Vols. 269 and 270). New York: Berlin.