Master Curve analysis of potentially inhomogeneous materials

Author:

Scibetta M.

Publisher

Elsevier BV

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Statistical Analysis of Master Curve Sampling, Screening, and Weighting Methodologies;Journal of Testing and Evaluation;2024-01-29

2. Prediction of fracture toughness of SA738Gr.B steel in the ductile-brittle transition using master curve method and bimodal master curve method;International Journal of Pressure Vessels and Piping;2020-05

3. Study on fracture toughness evaluation method of SA738Gr.B steel heat affected zone in ductile-brittle transition region;Journal of Nuclear Science and Technology;2019-04-16

4. Application and validation of the notch master curve in medium and high strength structural steels;Journal of Mechanical Science and Technology;2015-10

5. Evaluating the fracture toughness of reactor pressure vessel (RPV) materials subject to embrittlement**Some portions of this chapter have been gleaned from Chapter 3 of: International Atomic Energy Agency, Integrity of Reactor Pressure Vessels in Nuclear Power Plants: Assessment of Irradiation Embrittlement Effects in Reactor Pressure Vessel Steels, IAEA Nuclear Energy Series NP-T-3.11, IAEA, Vienna (2009), a chapter authored by the first author of this chapter (no attribution in the IAEA document)Notice: This manuscript has been authored by UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the US Department of Energy. The United States Government retains and the publisher by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.;Irradiation Embrittlement of Reactor Pressure Vessels (RPVs) in Nuclear Power Plants;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3