1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Vi´egas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.
2. Development of gridded surface meteorological data for ecological applications and modelling;Abatzoglou;Int. J. Climatol.,2013
3. Comparison of hydrological and vegetation remote sensing datasets as proxies for rainfed maize yield in Malawi;Anghileri;Agric. Water Manage.,2022
4. An interaction regression model for crop yield prediction;Ansarifar;Sci. Rep.,2021
5. Local indicators of spatial association-LISA;Anselin;Geogr. Anal.,1995