Improving collaborative filtering-based recommender systems results using Pareto dominance

Author:

Ortega Fernando,Sánchez José-Luis,Bobadilla Jesús,Gutiérrez Abraham

Publisher

Elsevier BV

Subject

Artificial Intelligence,Information Systems and Management,Computer Science Applications,Theoretical Computer Science,Control and Systems Engineering,Software

Reference30 articles.

1. Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions;Adomavicus;IEEE Transactions on Knowledge and Data Engineering,2005

2. Fuzzy-genetic approach to recommender systems based on a novel hybrid user model;Al-Shamri;Expert Systems with Applications,2008

3. Cinema screen recommender agent: combining collaborative and content-based filtering;Antonopoulus;IEEE Intelligent Systems,2006

4. A hybrid content-based and item-based collaborative filtering approach to recommend TV programs enhanced with singular value decomposition;Barragáns;Information Sciences,2010

5. A framework for collaborative filtering recommender systems;Bobadilla;Expert Systems with Applications,2011

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recommendation System for Relational Data Using Relational Hard C-Means;2024 21st International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON);2024-05-27

2. Towards an Ontology-Based E-Learning Recommendation System;2023 3rd International Conference on Computing and Information Technology (ICCIT);2023-09-13

3. Utilizing Alike Neighbor Influenced Similarity Metric for Efficient Prediction in Collaborative Filter-Approach-Based Recommendation System;Applied Sciences;2022-11-17

4. Optimal Dependence of Performance and Efficiency of Collaborative Filtering on Random Stratified Subsampling;Big Data Mining and Analytics;2022-09

5. Artificial intelligence in E-Commerce: a bibliometric study and literature review;Electronic Markets;2022-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3