FaultFace: Deep Convolutional Generative Adversarial Network (DCGAN) based Ball-Bearing failure detection method

Author:

Viola JairoORCID,Chen YangQuanORCID,Wang JingORCID

Publisher

Elsevier BV

Subject

Artificial Intelligence,Information Systems and Management,Computer Science Applications,Theoretical Computer Science,Control and Systems Engineering,Software

Reference41 articles.

1. Fault detection in wireless sensor networks through SVM classifier;Zidi;IEEE Sensors Journal,2018

2. Machine-learning approach in detection and classification for defects in TSV-based 3-D IC;Huang;IEEE Transactions on Components, Packaging and Manufacturing Technology,2018

3. Detection of power grid disturbances and cyber-attacks based on machine learning;Defu Wang;Journal of Information Security and Applications,2019

4. Deep-structured machine learning model for the recognition of mixed-defect patterns in semiconductor fabrication processes;Lee;IEEE Transactions on Semiconductor Manufacturing,2018

5. D.-W. Jang, S. Lee, J.-W. Park, D.-C. Baek, Failure detection technique under random fatigue loading by machine learning and dual sensing on symmetric structure, International Journal of Fatigue 114 (December 2017) (2018) 57–64, doi: 10.1016/j.ijfatigue.2018.05.004.

Cited by 74 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generative Convolutional Monitoring Method for Online Flooding Recognition in Packed Towers;Journal of the Taiwan Institute of Chemical Engineers;2024-12

2. Data Guardians;Advances in Information Security, Privacy, and Ethics;2024-05-16

3. Sample generation method for marine diesel engines based on FEM simulation and DCGAN;Journal of Mechanical Science and Technology;2024-05

4. Subdomain adaptation joint attention network enabled two-stage strategy towards few-shot fault diagnosis of LRE turbopump;Advanced Engineering Informatics;2024-04

5. Application of generative adversarial networks in image, face reconstruction and medical imaging: challenges and the current progress;Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization;2024-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3