Large-scale multi-agent reinforcement learning-based method for coordinated output voltage control of solid oxide fuel cell
Author:
Funder
South China University of Technology
National Natural Science Foundation of China
Publisher
Elsevier BV
Subject
Fluid Flow and Transfer Processes,Engineering (miscellaneous)
Reference33 articles.
1. Coordinated control of gas supply system in PEMFC based on multi-agent deep reinforcement learning;Li;Int. J. Hydrogen Energy,2021
2. Distributed deep reinforcement learning-based multi-objective integrated heat management method for water-cooling proton exchange membrane fuel cell;Li;Case Stud. Therm. Eng.,2021
3. Efficient experience replay based deep deterministic policy gradient for AGC dispatch in integrated energy system;Li;App. Energy,2021
4. A novel data-driven controller for solid oxide fuel cell via deep reinforcement learning;Li;J. Clean. Prod.,2021
5. A data-driven output voltage control of solid oxide fuel cell using multi-agent deep reinforcement learning;Li;Appl. Energy,2021
Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Adaptive data-driven controller based on fractional calculus for solid oxide fuel cell;International Journal of Dynamics and Control;2024-06-17
2. Recent progress and challenges of multi-stack fuel cell systems: Fault detection and reconfiguration, energy management strategies, and applications;Energy Conversion and Management;2023-06
3. Optimal dual-model controller of solid oxide fuel cell output voltage using imitation distributed deep reinforcement learning;International Journal of Hydrogen Energy;2023-04
4. Multi‐agent reinforcement learning for process control: Exploring the intersection between fields of reinforcement learning, control theory, and game theory;The Canadian Journal of Chemical Engineering;2023-03-02
5. Optical Character Recognition of Power Equipment Nameplate for Energy Systems Based on Recurrent Neural Network;Frontiers in Energy Research;2022-08-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3