A data-driven approach to full-field nonlinear stress distribution and failure pattern prediction in composites using deep learning
Author:
Publisher
Elsevier BV
Subject
Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Mechanics of Materials,Computational Mechanics
Reference49 articles.
1. Material structure-property linkages using three-dimensional convolutional neural networks;Cecen;Acta Mater.,2018
2. Deep learning approaches for mining structure-property linkages in high contrast composites from simulation datasets;Yang;Comput. Mater. Sci.,2018
3. Geometric deep learning for computational mechanics part I: Anisotropic hyperelasticity;Vlassis;Comput. Methods Appl. Mech. Engrg.,2020
4. Predicting microstructure-dependent mechanical properties in additively manufactured metals with machine-and deep-learning methods;Herriott;Comput. Mater. Sci.,2020
5. A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning;Wang;Comput. Methods Appl. Mech. Engrg.,2018
Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Harmonizing physical and deep learning modeling: A computationally efficient and interpretable approach for property prediction;Scripta Materialia;2025-01
2. Rapid prediction of structural thermal loads and temperature field based on physics and data co-driven approach under partial labeled data;International Communications in Heat and Mass Transfer;2024-12
3. A deep learning framework based on attention mechanism for predicting the mechanical properties and failure mode of embedded wrinkle fiber-reinforced composites;Composites Part A: Applied Science and Manufacturing;2024-11
4. Multimodal data fusion enhanced deep learning prediction of crack path segmentation in CFRP composites;Composites Science and Technology;2024-10
5. Virtual rapid prototyping of materials with deep learning: spatiotemporal stress fields prediction in ceramics employing convolutional neural networks and transfer learning;Virtual and Physical Prototyping;2024-09-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3