A robust solution of a statistical inverse problem in multiscale computational mechanics using an artificial neural network
Author:
Publisher
Elsevier BV
Subject
Computer Science Applications,General Physics and Astronomy,Mechanical Engineering,Mechanics of Materials,Computational Mechanics
Reference72 articles.
1. Non-Gaussian positive-definite matrix-valued random fields for elliptic stochastic partial differential operators;Soize;Comput. Methods Appl. Mech. Engrg.,2006
2. Tensor-valued random fields for meso-scale stochastic model of anisotropic elastic microstructure and probabilistic analysis of representative volume element size;Soize;Probab. Eng. Mech.,2008
3. Multiscale identification of the random elasticity field at mesoscale of a heterogeneous microstructure using multiscale experimental observations;Nguyen;Int. J. Multiscale Comput. Eng.,2015
4. Robust multiscale identification of apparent elastic properties at mesoscale for random heterogeneous materials with multiscale field measurements;Zhang;Materials,2020
5. Maximum likelihood estimation of stochastic chaos representations from experimental data;Desceliers;Internat. J. Numer. Methods Engrg.,2006
Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A thermodynamically consistent physics-informed deep learning material model for short fiber/polymer nanocomposites;Computer Methods in Applied Mechanics and Engineering;2024-07
2. Machine Learning in Biomaterials, Biomechanics/Mechanobiology, and Biofabrication: State of the Art and Perspective;Archives of Computational Methods in Engineering;2024-05-04
3. Multi-scale identification of composite using modified constitutive relation error: Formulation and numerical study;Computer Methods in Applied Mechanics and Engineering;2024-05
4. Acoustic data-driven framework for structural defect reconstruction: a manifold learning perspective;Engineering with Computers;2024-01-06
5. A Thermodynamically Consistent Physics-Informed Deep Learning Material Model for Short Fiber/Polymer Nanocomposites;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3