A fast centrality-meter for heavy-ion collisions at the CBM experiment
Author:
Funder
Samson AG
BMBF
Walter Greiner Gesellschaft zur Förderung der physikalischen Grundlagenforschung e.V.
HGS-HiRe
GSI
Publisher
Elsevier BV
Subject
Nuclear and High Energy Physics
Reference51 articles.
1. The CBM experiment at GSI/FAIR
2. The CBM experiment at FAIR
3. An equation-of-state-meter of quantum chromodynamics transition from deep learning
4. Regressive and generative neural networks for scalar field theory
Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine learning study to identify collective flow in small and large colliding systems;Physical Review C;2024-08-28
2. Studying high-energy nuclear physics with machine learning;International Journal of Modern Physics E;2024-06
3. Determination of impact parameter for CEE with digi-input neural networks;Journal of Instrumentation;2024-05-01
4. Exploring QCD matter in extreme conditions with Machine Learning;Progress in Particle and Nuclear Physics;2024-02
5. A neural network approach for orienting heavy-ion collision events;Physics Letters B;2024-01
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3