Five-axis finishing tool path generation for a mesh blade based on linear morphing cone

Author:

Zhang Rong1,Hu Pengcheng1,Tang Kai1

Affiliation:

1. Hong Kong University of Science and Technology, Hong Kong

Abstract

Abstract Blisk is an essential component in aero engines. To maintain good aero-dynamic performance, one critical machining requirement for blades on blisk is that the generated five-axis tool path should be boundary-conformed. For a blade discretely modeled as a point cloud or mesh, most existing popular tool path generation methods are unable to meet this requirement. To address this issue, a novel five-axis tool path generation method for a discretized blade on blisk is presented in this paper. An idea called Linear Morphing Cone (LMC) is first proposed, which sets the boundary of the blade as the constraint. Based on this LMC, a CC curve generation and expansion method is then proposed with the specified machining accuracy upheld. Using the proposed tool path generation method, experiments on discretized blades are carried out, whose results show that the generated tool paths are both uniform and boundary-conformed. Highlights Five-axis finishing tool path based on Linear Morphing Cone (LMC) is presented. The method is implemented on a mesh model. Tool path generated from the proposed method is boundary-conforming. Boundaries of the machining region can be arbitrarily assigned. Experiments are carried out on two mesh blades.

Funder

Hong Kong

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3