A framework for negative knowledge to support hybrid geometric modeling education for product engineering

Author:

Otto Harald E.1,Mandorli Ferruccio1

Affiliation:

1. Polytechnic University of Marche, Via Brecce Bianche, Ancona I-60131, Italy

Abstract

Abstract Due to the full integration of CAD systems into modern product development and engineering, the competency to create usable geometric models has become an essential requirement for current CAD users. To avoid serious repercussions for future engineering labor, the focus of CAD education needs to be raised from the teaching of knowledge that is merely aimed at operating a system, to the development of basic strategic knowledge. From a pedagogical point of view, this situation represents a challenging task that requires new, innovative teaching methodologies. These new methodologies must facilitate the development of know-how and cognitive ability to organize domain knowledge within a holistic mental model allowing for accurate perception of the significance of circumstances and the possible consequences of actions. In this paper a new direction for CAD education is presented, based on the integration of traditional teaching methods with an educational approach based on negative knowledge. Analysis of first empirical results of this newly developed and implemented approach showed promising results. Improvements were observed in a better understanding of issues related to the usability of CAD models and an increased capability to recognize critical modeling situations and thus prevent the mistakes typically made by novices. Also, successful autonomous attempts could be observed of recovery from situations caused either by an accumulation of small mistakes or by severe modeling errors, which usually require remedial intervention by academic supervisors. Highlights Introduction of a novel framework for supporting competency development within the field of higher education for hybrid geometric modeling. Integration of traditional teaching methods with an educational approach based on negative knowledge. Currently observed improvements of learning outcomes include a better understanding of issues related to the usability of CAD models. Increased capability to recognize critical modeling situations and thus prevent the mistakes typically made by novices.

Funder

Polytechnic University of Marche

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modelling and Simulation,Computational Mechanics

Reference41 articles.

1. Modelling learning from errors in daily work;Bauer;Learning in Health and Social Care,2007

2. The odds ratio;Bland;BMJ,2000

3. Multiple-view feature modelling for integral product development;Bronsvoort;Computer-Aided Design,2004

4. Hybrid feature modeling for sport shoe sole design;Butdee;Computers & Industrial Engineering,2002

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3