Finite element method for the static and dynamic analysis of FRP guyed tower

Author:

Alshurafa Sami1,Alhayek Hanan1,Polyzois Dimos1

Affiliation:

1. Department of Civil Engineering, University of Manitoba, Winnipeg, Manitoba R3T 5V6, Canada

Abstract

Abstract A research study has been carried out to provide design guidelines for glass-fiber reinforced polymer (GFRP) guyed tower. Both material testing and theoretical analysis are involved. The tower examined in this study has 81 m in height with a uniform equilateral triangle cross section having sides of 450 mm. The tower supported by seven sets of guy wires oriented at 120°, each set consisting of three guy wires. The tower was assumed to be supported at the base by means of a pinned connection to provide full moment release. The tower was analyzed using the finite element ANSYS software and was designed to satisfy both the ultimate and the serviceability limit state requirements of the CSA-S37-01 Standard. The guyed tower was analyzed in static to evaluate the tower strength failure using several advanced failure theories. Modal analysis and full dynamic analysis using CSA-37-01 Standard were extensively performed to evaluate the vibration performance and to obtain an accurate dynamic response of the full-scale tower. The paper presents the results obtained from material testing and from a finite element, ANSYS models developed for the static and dynamic analysis of the multi-cells 81 m lightweight-guyed towers. Highlights The research = involved the analysis and the design of FRP guyed tower composed of individual cells fabricated from fiberglass matting bonded together to form an equilateral triangle. The layout, the dimensions of the tower and the thickness of the cell walls were determined from a finite element analysis. Fifteen coupons were fabricated and tested based on ASTM standards to evaluate the mechanical properties of the GFRP material. Several non-linear finite element models were developed to meet both the manufacturing constraints and strength requirements. Several non-linear finite element models were carried out for the static and dynamic analysis of an 81 m tower.

Funder

Manitoba Hydro

NSERC Wind Energy Strategic Network

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modelling and Simulation,Computational Mechanics

Reference37 articles.

1. Parametric study on the strength and stiffness of FRP meteorological guyed towers;Alshurafa,2018

2. An experimental and numerical study into the development of FRP guyed towers;Alshurafa;Composite Structures,2018

3. Design recommendations and comparative study of FRP and steel guyed towers;Alshurafa,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3