Solution of combined economic and emission dispatch problem using a novel chaotic improved harmony search algorithm

Author:

Rezaie Hamid1,Kazemi-Rahbar M.H.2,Vahidi Behrooz1,Rastegar Hasan1

Affiliation:

1. Department of Electrical Engineering, Amirkabir University of Technology (AUT), 424 Hafez Ave, Tehran, Iran

2. Department of Electrical Engineering, Shahed University, Persian Gulf Freeway, Tehran, Iran

Abstract

Abstract This paper presents a new optimization technique developed based on harmony search algorithm (HSA), called chaotic improved harmony search algorithm (CIHSA). In the proposed algorithm, the original HSA is improved using several innovative modifications in the optimization procedure such as using chaotic patterns instead of uniform distribution to generate random numbers, dynamically tuning the algorithm parameters, and employing virtual harmony memories. Also, a novel type of local optimization is introduced and employed in the algorithm procedure. Applying these modifications to HSA has resulted in enhancing the robustness, accuracy and search efficiency of the algorithm, and significantly reducing the iterations number required to achieve the optimal solution. To validate the effectiveness of CIHSA, it is used to solve the combined economic emission dispatch (CEED) problem, which practically is a complex high-dimensional non-convex optimization task with several equality and inequality constraints. Six test systems having 6, 10, 13, 14, 40, and 140 generators are investigated in this study, and the valve-point loading effects, ramp rate limits and power transmission losses are also taken into account. The results obtained by CIHSA are compared with the results reported in a large number of other research works. Furthermore, the statistical data regarding the CIHSA performance in all test systems is presented. The numerical and statistical results confirm the high quality of the solutions found by CIHSA and its superiority compared to other existing techniques employed in solving CEED problems. Highlights An innovative and strong optimization technique based on harmony search is proposed. The proposed algorithm is tested on solving economic emission dispatch problem. It has the potential to be applied to many other engineering optimization problems. Six test systems considering valve point effect and transmission losses are studied. High quality solutions are obtained and compared with a large number of other methods.

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modeling and Simulation,Computational Mechanics

Reference76 articles.

1. Combined economic and emission dispatch solution using flower pollination algorithm;Abdelaziz;International Journal of Electrical Power & Energy Systems,2016

2. Multiobjective evolutionary algorithms for electric power dispatch problem;Abido;IEEE Transactions on Evolutionary Computation,2006

3. Multiobjective particle swarm optimization for environmental/economic dispatch problem;Abido;Electric Power Systems Research,2009

4. Economic dispatch using chaotic bat algorithm;Adarsh;Energy,2016

5. Solution of different types of economic load dispatch problems using a pattern search method;Al-Sumait;Electric Power Components and Systems,2008

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3