A graph-based method for fitting planar B-spline curves with intersections

Author:

Bo Pengbo1,Luo Gongning1,Wang Kuanquan1

Affiliation:

1. School of Computer Science and Technology, Harbin Institute of Technology, China

Abstract

Abstract The problem of fitting B-spline curves to planar point clouds is studied in this paper. A novel method is proposed to deal with the most challenging case where multiple intersecting curves or curves with self-intersection are necessary for shape representation. A method based on Delauney Triangulation of data points is developed to identify connected components which is also capable of removing outliers. A skeleton representation is utilized to represent the topological structure which is further used to create a weighted graph for deciding the merging of curve segments. Different to existing approaches which utilize local shape information near intersections, our method considers shape characteristics of curve segments in a larger scope and is thus capable of giving more satisfactory results. By fitting each group of data points with a B-spline curve, we solve the problems of curve structure reconstruction from point clouds, as well as the vectorization of simple line drawing images by drawing lines reconstruction.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Computational Mathematics,Computer Graphics and Computer-Aided Design,Human-Computer Interaction,Engineering (miscellaneous),Modelling and Simulation,Computational Mechanics

Reference26 articles.

1. An optimal transport approach to robust reconstruction and simplification of 2d shapes;de Goes;Computer Graphics Forum,2011

2. Reconstructing curves with sharp corners;Dey;Computational Geometry,2001

3. The crust and the β-skeleton: combinatorial curve reconstruction;Amenta;Graphical Models and Image Processing,1998

4. A simple provable algorithm for curve reconstruction;Dey,1999

5. Robust reconstruction of 2d curves from scattered noisy point data;Wang;Computer-Aided Design,2014

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3