1. Attia, A., Dayan, S., 2018. Global overview of imitation learning. arXiv, abs/1801.06503.
2. Bai, S., Kolter, J., Koltun, V., March 2018. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling.
3. Barredo Arrieta, A., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., Garcia, S., Gil-Lopez, S., Molina, D., Benjamins, R., Chatila, R., Herrera, F., 2020. Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities and challenges toward responsible ai. Informat. Fusion, 58, 82–115, ISSN 1566-2535. doi:10.1016/j.inffus.2019.12.012.
4. Can we open the black box of ai?;Castelvecchi;Nature,2016
5. de Haan, P., Jayaraman, D., Levine, S. December 2019. Causal confusion in imitation learning. Neural Information Processing Systems Workshop, Vancouver, Canada.