Author:
Mittal Gaurav,Bajpai Harshit,Giri Ankik Kumar
Reference29 articles.
1. G. Alessandrini and S. Vessella, Lipschitz stability for the inverse conductivity problem, Adv. in Appl. Math., 35(2), 207-241, 2005.
2. A.B. Bakushinsky and M. Kokurin, Iterative methods for approximate solutions of inverse problem, In: Mathematics and its Applications, Springer, Berlin, 2004.
3. E. Beretta, M. V. de Hoop, L. Qiu and O. Scherzer, Inverse boundary value problem for the Helmholtz equation with multi-frequency data, Proceedings of the Project Review, Geo-Mathematical Imaging Group, Purdue University, 1, 185-203, 2013.
4. M.V. de Hoop, L. Qiu and O. Scherzer, Local analysis of inverse problems: Hölder stability and iterative reconstuction, Inverse Probl., 28(4), 045001, pp. 16, 2012.
5. M.V. de Hoop, L. Qiu and O. Scherzer, An analysis of a multi-level projected steepest descent iteration for nonlinear inverse problems in Banach spaces subject to stability constraints, Numer. Math., 129, 127-148, 2015.