1. Stürmlinger T, Gladysz B, Strauch M, Albers A. 2018. Design with Industry 4.0 – Priorization of sensor data for a smart data driven product development process. Proceedings of Tools and Methods of Competitive Engineering 2018 (in review)
2. Behrend H. Entwicklung eines lernfähigen Systems zur Beobachtung des Werkzeugverschleisses beim Drehen. Braunschweig, Techn. Univ., Diss. Essen: Vulkan-Verl. Schriftenreihe des IWF. 1996. ISBN 3-8027-8632-7
3. Prediction of the product quality of turned parts by real-time acoustic emission indicators;Albers;Procedia Cirp,2017
4. Tool wear detection using time series analysis of acoustic emission;Liang;J Eng IndTrans ASME,1989
5. Tool condition monitoring in interrupted cutting with acceleration sensors;Ratava;Procedia Crip,2017